Supervised vs. Unsupervised Learning
何謂機器學習 (Machine Learning)?
-
透過演算法將已知推論到未知。 "Algorithms for inferring unknowns from knows"
-
應用場景包含: 圖像、聲音識別; 預測; 導航
探討機器學習前,一般會將處理的問題分成 Supervised vs. Unsupervised Learning 兩類:
-
Supervised: Given the data $(x^i,y^i)$, choose a function $f(x^i)=y^i$.
- Classification: $y_i \in $ { $ Finite~Set $ }$ $
- Regression: $y_i \in \mathbb{R}$
Note: $x^i \in \mathbb{R}^2$ which means $x^i$ equals to $(x^i_1,x^i_2)$
-
Unsupervised: Given the data $(x^i,..., x^n)$, find the pattern in the data.
- Clustering
- Density Estimation
- Dimensionality Reduction
這只是比較概略的劃分,事實上還有其他更細緻的方法,如:
- Semi-supervised Learning: Given the $(x^1,y^1),...,(x^k,y^k),x^{k+1},...,x^n$, predict $y^{k+1},...,y^n$.
- Active Learning
- Decision Theory
- Reinforcement Learning
自己因為碩論的關係,關注議題以 Reinforcement Learning Model 為主,但在實際運用上比較常見的機器學習屬於Supervised, Unsupervised 和 Semi-supervised Learning.